

プレス加工の見える化

プレス加工品の開発・量産を効率化するifm SmartStamp

ドイツのアッテンドルンのAutomotive Center Südwestfalen は、創立から10年あまりの受託試験サービス会社で、最新設備 による効率的でサステナブルな先端技術を自動車部品のサプラ イヤーやOEMに提供しています。同社のサーボプレス機には、自 動化を得意とするifmのソフトウェア「ifm SmartStamp」が導入 されています。

Automotive Center Südwestfalen (acs) は、顧客の開発コス トや時間を軽減しシナジー効果をもたらす受託試験サービスを 提供しています。acsは、バーチャル開発や接合・プラスチック・プ レス加工のさまざまな技術、部品試験等を一手に引き受けてい ます。

短時間で行われるさまざまな成形加工

「加圧能力1000トンのサーボプレス機を使って、自動車製造の 成形加工やプロセス開発、試作や小規模量産のプレス技術を手 掛けています」と、プレス加工技術部長のJan Böcking氏は言 います。

「鋼板やアルミの冷間・熱間成形の他、炭素繊維複合材の成形 も行っています。サーボプレスのメリットは、さまざまな成形を高 い加工精度で行える点です。そのため、圧入やせん断など多彩な 加工が可能です。それぞれの成形加工プロセスに合わせた速度 プロファイルを正確に調整できます」

開発の効率化を支援する精密な分析

試験精度を向上させ、より的確に試験を実施・進行できるよ う、acsは2023年からサーボプレス機に追加のセンサと「ifm SmartStamp」ソフトウェアを導入しました。

「acsは通常、量産品ではなく試作品で数回のストロークを行い ます。部品とプレス加工プロセスの開発を効率的に進めるため、 試験した部品と加圧プロセスの各ストローク後に毎回評価を行 います」と、Böcking氏は言います。「以前は、各ストロークを正 確に分析・評価でき、試験全体の知見が得られるようなセンサや ソフトウェアを導入していませんでした。今では、ifmのソフトウェ アにより、プレス加圧の監視が可能になりました」

簡単導入で高い投資利益率(ROI)を実現

自動化を得意とするifmのソフトウェア「ifm SmartStamp」は、 ひずみ勾配や偏心荷重、プレス加工時のひずみの挙動をミリ秒 単位で検出します。プレス加圧が目標値から外れると、工場のオ ペレータに警告を発報します。

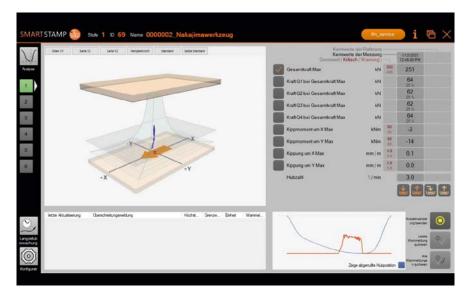
「ラムスライドが傾くと、過度の負荷がかかり長期的には損傷し てしまいます」と、ifmのプロダクトマネジメント・アプリケーショ ン副部長、Christoph Schneider氏は言います。

中島法による成形限界試験後に割れが発生した試料。材料の成形限界を取得することにより、自動車部品に適しているかなどを判断できます。

中島法で鋼板の成形限界を評価するacsの試験の様子。球頭 パンチで割れが発生するまで試料の薄板を押します。

moneoのメリットは、各作業場から プレスのプロセスデータとステータス データにアクセスできる点です。こうし て、プレス機や金型の重大な損傷を効 果的に防止できます。

「ベアリングやギアが損傷し、プレス機のヘッドなどに亀裂が入る場合もあります。プレス機の設計上の理由や、金型の段取り替え時のずれで偏心荷重となり、トルクのばらつきが大きくなります。ifm SmartStampにより、偏心荷重によるコスト損失を少ない労力で防止できます。4つの高精度なセンサを4台のサーボプレス機すべてに後付けするだけで、ソフトウェアで効率的に傾きを検出できます」


既存センサのデータを取り込んで計算

サーボプレス機に設置されている荷重センサのデータと、金型 番号とストローク数の情報を制御システム側で読み取ってソフト ウェアに取り込むことができます。

「ifm SmartStampは、こうしたデータや値をすべて処理し、利用できる形式に変換します。これにより、最初のストロークを行っている時に機械のオペレータが金型の位置や調整の要否を確認することができます」と、Schneider氏は言います。

ストローク毎に精密分析

acsでは、各ストロークを精密に検出できる機能も利用していると、Böcking氏は説明します。「この高精度なデータから、実際の

ifm SmartStampソフトウェアで、プレス加工 時の応力曲線を精密追跡できます。ifmのIIoT プラットフォームのmoneoに簡単・シームレス に統合できます。

プレス加工プロセスと、試作試験における材料と金型の挙動を 詳細に分析しています。これにより、毎回ストロークを調整して 金型とワークへの影響をすぐに把握することができます。また、 記録したデータをバーチャル・シミュレーションに利用して、実際 のプロセスとPCのシミュレーションを照合することも可能です」

moneo lloTプラットフォームとシームレスに統合

ifmのmoneo IIoTプラットフォームは、ifm SmartStampとのシ ームレスな統合によりデータ分析を簡素化します。

「moneoのメリットは、各作業場からプレスのプロセスデータと ステータスデータにアクセスできる点です」と、Jan Böcking氏 は言います。「規定のリミット値を超過すると警告を行うmoneo のアラーム機能により、リアルタイムに対処して緊急時はプレス 機を停止させることができます。こうして、プレス機や金型の重大 な損傷を効果的に防止できます」

11のソフトウェアモジュールでプレス加工を完全デジタル化

ソフトウェアによる実際のプレス成形工程の分析に加え、ifmは acsが導入したmoneo IIoTプラットフォームに追加できるソフト ウェアモジュールも提供しています。

「ifmは、油圧装置・コンプレッサ・油圧回路の作動油を監視す るモジュールを提供しています」と、Christoph Schneider氏は 言います。サーボプレスや油圧、クランクいずれであっても、ソフト ウェアモジュールで監視できます。

「既存のセンサをソフトウェアに取り込んで、データを生成でき ます。この他に、ハードウェアとソフトウェアをセットにした最適ソ リューションも提供しています。プレス機のオペレータは、プレス 加工に直接、または間接的に関係するすべての部分を簡単に監 視できるメニューにより、全体が把握でき、弊社のAIツールで自 動的に診断できます」と、Christoph Schneider氏は言います。

デジタルツイン作成を目指すacs

acsは、プレス機の完全なデジタルマップ化を目指しており、Jan Böcking氏はこのように強調します。「デジタル化のメリットをさ らに活かして、プロセスをデジタルツインにマッピングすることを 目指しています。SmartStampソフトウェアを使い、まずプレス加 工を力学的・応力的に正確に記録するという最初のステップに 取り組んでいます。今後は、プロセスに関係する可変値をリアル タイムで記録し、これを実際にプロセスの検証に利用して各製 品のデジタルツイン開発から始め、プレス加工品の確実な成形

限界と持続可能性が少数のサンプルから取得できるようにした いと考えています。これが、当社とお客さまの開発期間とリソー スの削減など、多くのメリットになることを期待しています」

結論

ifm SmartStampソフトウェアにより、Automotive Center Südwestfalenのプレス加工プロセスがより精密に分析できるように なりました。その結果、成形加工技術が大きく進歩し、材料の調 査と製品開発をより効率化させることができました。ソフトウェ アは、デジタルツイン作成に欠かせないものとなっています。