

Der schnellere Weg zur Palette

Komplettlösung zur Palettentaschendetektion

- Leistungsstarke Video Processing Unit mit vorinstallierter Software "Pallet Detection System (PDS)"
- Schnittstellen für 6 Kameraköpfe sowie weitere Sensoren für effiziente AGV-Steuerung
- Hohe Bildwiederholrate sorgt für zuverlässige und schnelle Nachführung bei Palettenbewegung

ifm - close to you!

Video Processing Unit (VPU)

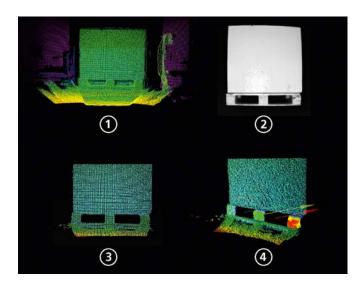
Ausführung

Rostoll-Ne

Anschluss für bis zu 6 Kameras, Gigabit-Ethernet-Schnittstelle für Sensorsignale; integriertes Palettenerkennungssystem

OVP812

Mit zusätzlichem Kollisionsschutz


OVP813

Kameraköpfe			
Abmessungen [mm]	Bildauflösung [Pixel]	Öffnungswinkel [°]	Bestell-Nr.
90 x 31 x 26	38 K	60 x 45	O3R222

Leistungsstarke Lösung für mehr Effizienz

Das Palettenerkennungssystem PDS (Pallet Detection System) beschleunigt das autonome und teilautonome Palettenhandling und trägt damit zu effizienteren Intralogistikprozessen bei. Die bewährte Kombination aus leistungsstarken 2D/3D-Kameraköpfen und ebenso performanter Video-Processing-Unit wird dafür um eine Software erweitert, die vollautomatisch und lageunabhängig alle Standard-Palettentypen mit zwei Taschen schnell und präzise identifiziert und die zentimetergenaue Navigation der Gabeln übernimmt.

Die Qualität der Kameraköpfe sowie die hohe Wiederholrate sichern die Verfügbarkeit von aussagekräftigen 3D-Punktewolken auch unter dynamischen und erschwerten Einsatzbedingungen. Unerwartete Palettenbewegungen werden schnell erfasst, sodass das Programm die Nachführung der Gabel zügig umsetzen kann.

Die PDS-Palettenerkennung verarbeitet zunächst die durch den Visionsensor O3R2xx erfassten Amplituden- und Abstandsdaten ①. Anders als beim 2D-Bild ② kann das 3D-Bild noch Artefakte und Störeinflüsse enthalten. Daher wird das Bild im nächsten Schritt gefiltert, um es zu bereinigen und unerwünschte Pixel zu entfernen ③. Das gefilterte Bild wird dann benutzt, um die Position und Lage der Palette und ihrer Taschen im dreidimensionalen Raum exakt zu bestimmen ④.

BEST FRIENDS

GrafikdisplayProgrammierbares HMI zur Steuerung mobiler Maschinen

Multiturn-Drehgeber Positionen und Drehbewegungen exakt erfassen

ecomatController Leistungsstarke 32-Bit-Controller steuern zuverlässig AGVs

